

Jet Propulsion Laboratory Pasadena, CA

Leigh Rosenberg Kevin Roust

March 3, 2000

- L. Rosenberg
- J. Hihn
- K. Roust
- T. Roust
- K. Warfield
- H. Habib-Agahi
- Team X Subsystem Engineers

LIMICE VIESGAIRES - COUNTING

- 1 Why build yet another model?
- 2 Model objectives
- 2 Current model status (including history)
- 3 Modeling approach
- 4 Database
- 5 Statistical basis
- 6 Model summary WBS, CERs
- 7 Validation procedure
- 8 Current & future activities

Mariany bronders/Eistennotheaningogieik

The Old Days -- ≤1990

- Non-competitive proposals (average cost per project ≈ \$1B without L/V)
- 3-5 proposals (design/cost) per year
- · No faster, better, cheaper
- No real cost caps
- Old cost models built to old mission style
- Questionable statistical validation of old models.

Today -- ≥2000

- Competitive proposals i.e., Discovery, SMEX, ESSP, etc (average cost \approx \$75 300M with L/V)
- 60-100 proposals (design/cost) per year
- Faster, better, cheaper
- Real cost caps
- Defendable, accurate early cost estimates are very important -
 - -Modeling used as grass roots check & when detailed design data is not available
 - -Validation necessary
- Old cost models no longer applicable
- Outside cost models do not fit many JPL missions very well:
 - No real deep space cost data beyond Mars
 - JPL has missions to Mercury, Jupiter comets,
 Pluto, rovers, landers, sample return.

March 3, 2000

Light of the supplied of the contraction of a light of the contraction of the contraction

almibicial (G) by each wes

- The cost estimation community needs a model that:
 - Is fast, accurate, & consistent
 - Has a minimum of subjective inputs
 - Can be used for cost/performance trade analysis
 - Is defendable (approved by peers, good statistical basis, based on actual mission costs)
 - Can be used to identify proposal/design tall pole issues,
 - Can be used early in proposal cycle to identify proposal areas of strength & weakness, and as a sanity check on proposal cost estimates
 - Can be successfully integrated with other automated design tools
 - Can be used as a surrogate when proposal teams are over committed

LAMBOO CHEMENTONS ENTIRE LONGY

- PMCM (version 1) developed in 1997,8
 - Includes instrument model, S/C bus model, secondary CER models, future automated development process assumptions
 - In use for nearly 2 years including Team X, Discovery 98 Step 1 proposals
- Instrument model developed in 1996 (updated 98)
 - Based on 95 actual flown instruments
 - In use on JPL design teams (including Team X)
- Secondary CER models (project office, ATLO, MA&E) originally developed in 1996 to provide total project life cycle cost

Leur remissiva de le balantis

- PMCM (version 2) completed in 1999. Includes major updates to S/C bus & mission operations models.
- Model reflects JPL's new automated design process.
- Successfully implemented with other JPL automated design tools.
- The model is <u>close</u> to obtaining its objectives.
- The model is used by JPL's proposal design team.
- Year 2000 update is in progress. This includes a formal validation

- PMCM (version 2) CER update process
 - Collected, reviewed, & verified data
 - Identified key cost drivers (design parameters)
 - Developed CERs for each subsystem based on all available parameters (cost drivers)
 - Reviewed results with Team X subsystem engineers
 - Revised & developed system & mission cost models
 - Encoded model in Excel worksheet (visual basic language)
 - Model validation currently on-going

Philosophy

- Avoid mass as a dependent variable
- Include key design parameters that are likely to be known in early stages of design (high level requirements)
- Keep model as linear as possible to make parameter interpretation intuitive
- Use of objective cost drivers, while minimizing use of subjective variables

- Identified 55 potential data records & collected > 200 design parameters (e.g., high level parts lists, tech type, pointing knowledge, BOL power, etc.).
- Deleted incomplete and duplicate records.
- This yielded 43 complete data records based on Team X studies completed from March 97-October 98 that assumed JPL's new FBC development process.

- While significant outliers were identified & removed, the objective was to keep data records as consistent as possible across subsystems
- Used multivariate linear regression & selected cost variables based on causal engineering relationships &:
 - F-ratio > 10 (1% for 10 degrees of freedom), adj $R^2 > 75\%$, student t-ratio > 1.95 (5%)
 - Dropped variables whose direction was inconsistent with engineering principles
 - Kept some variables with low t-ratios if:
 - Variable was a major design parameter
 - Coefficient was consistent with expert engineering judgement

		T
Total Project Costs (\$M)	†	t
1.0 Project Management		t
1.1 Project Manager & Staff	%	t
1.2 Launch Approval	List	t
1.3 Planetary Protection Approval	List	t
1.4 Education & Public Outreach	%	t
2.0 Science Team	WF	t
3.0 Mission Design & Project Engineering	%	t
4.0 Instruments		t
4.1 Payload Management	%	t
4.2 Payload Engineering	%	t
4.3 Instrument Burdens & Fees	%	t
4.4 Instrument I	CER	t/
5.0 Spacecraft		ď
	 	1
		ł
6.0 ATLO	CER	ł
		Ł
8.0 Reserves	%	F
9.0 Launch Vehicle	List	ł
10.0 Upper Stage / SRM	List	ŀ
	Laist	•

5.0 Spacecraft	
5.1 Primary Spacecraft	
5.1.1 S/C Bus Management	%
5.1.2 S/C Bus System Engineering	%
5.1.3 S/C Bus Burden & Fee	%

- 5.1.4 Attitude Control Subsystem
- 5.1.5 Command and Data Handling Subsystem
- 5.1.6 Power Subsystem
- 5.1.7 Propulsion Subsystem
- 5.1.8 Structures & Mechanisms Subsystem
- 5.1.9 Telecom Subsystem
- 5.1.10 Thermal Subsystem
- 5.1.11 Mechanical Build-Up
- 5.2 Stage 2

7.0 Mission Operations & Development

7.1 Command, Telemetry, & Mission Data Mgmt

了。但是**是我们的人们的人们的人们的人们的人们们**

- 7.2 Navigation
- 7.3 Experimental Flight Data Products
- 7.4 Sequence Engineering, Science Observation Planning, Ground Communications & Information
- 7.5 Project Provided Tasks
- 7.6 Antenna Charges

alder being en albiks

Cost Element	Statistically Significant Cost Model Inputs
ACS $(R^2 = 88.1, F-ratio = 45.3)$	Pointing Knowledge New Design Design Copy # of ACS HW Types # of Actuators
CDH $(R^2 = 62.3, F-ratio = 15.9)$	No Autonomy Number of Cards Processor < 50mips
Power $(R^2 = 95.7, F-ratio = 129)$	Array Area Cell Type Number of GPHS Battery Only
Propulsion (CER #1) $(R^2 = 72.7, F-ratio = 27.7)$	Cold Gas Hydrazine HAN/TEAN Bi-Prop/Dual Mode SEP
Propulsion (CER #2) (R ² = 81.6, F-ratio = 218)	Ln (Total Impulse)
Structures & Mechanisms (R ² = 84.4, F-ratio = 109)	# of Mechanism Types # of Mechanisms
Thermal Control $(R^2 = 83.0, F-ratio = 47.3)$	Destination - Sun/Merc. Launch Mass # of Instruments Destination Pressure

Cost Element	Statistically Significant Cost Model Inputs		
Telecommunications (R ² = 89.0, F-ratio = 32.3)	Ln (Downlink Datarate) Antenna Diameter Range (SC-Earth) Optical Secondary – UHF Secondary – X-band Mission Class Subsystem Redundancy		
Mechanical Build-Up (R ² = 82.2, F-ratio = 158)	Spacecraft Dry Mass		
ATLO (Engineering Algorithm)	Total of Subsystem Costs # of Instruments # of Spacecraft Elements		
GDS/MOS (Engineering Algorithm - TMOD Pricing Algorithms)	# of Instruments Satellite Tour Length Aerobraking Length Target Body Orbit Length Cruise Length Phase A/B Length Phase C/D Length DSN Schedule (# Weeks, Passes/Week, Hours/Pass, Antenna)		

gio.

LIVI COCICIL Somming Try & Estamaphie CER (Power)

- For each element of the power subsystem (power generation, energy storage, electronics), collected data on technology used and size of the element.
- Data was also collected on key system parameters (thermal environment, radiation total dose), mass by element, & cost by element total of 30 exogenous variables.
- Analyzed linear & log-linear forms as well as interactions between size and tech type
- Developed two models based on (1) array area and (2) beginning of life power
- Reviewed by Team X power subsystem engineers
- 2 outliers excluded -- unusual technologies (CIS array, thermal-mech-elec conversion)

Power Subsystem CER ($R^2 = 95.7\%$, F-ratio = 129)

Variable	Coefficient	t-ratio	-ratio Significance		
Constant	\$5,477 K	6.25	< 0.0001		
Battery Only	- \$4,149 K	-1.77	0.0887		
Array Area (m ²) – Si	\$ 253 K	4.14	0.0004		
Array Area (m ²) – GaAs	\$ 440 K	4.9	< 0.0001		
Array Area (m ²) – Adv. Cells	\$ 445 K	22.8	< 0.0001		
Number of GPHS	\$4,854 K	13.7	< 0.0001		

March 3, 2000

• PMCM (version 2) has complete high level WBS containing ≈50 CERs. There were 15 new CERs in 1999.

- It produces a breakdown of life cycle cost results by phase including:
 - Formulation
 - Implementation
 - Operations
- Out of 200 design parameters identified & tested, 47 were found significant

LL WAS AND VEHICOM CONTESTIGEN

- Review model structure (replicates project WBS)
- Review subsystem CER's with pertinent JPL engineers
- Tested version 1 vs. Discovery 98 proposals
- Currently testing version 2 & version 1 vs. actual missions/winning step 2 proposals (Genesis, Stardust, DS-1, MGS, Inside Jupiter, Deep Impact, Mars Pathfinder, Cloudsat, Cassini, Mars 98 (Orbiter & Lander))
- Peer review board evaluation

- Model structure replicates Team X design process and uses Team X WBS to determine total project cost.
- Project structure/flow that is modeled has been reviewed by Team X engineers and Team X customers over the last 5 years.
- Individual CER's have been reviewed & verified with pertinent JPL subsystem engineers.

Lavar Charles and California Cali

	Proposal	L Proposa	110-(111	Ψινι
	Grass Roots	Total Project		
	Costs	Cost	± %	
Deep Impact	204	254	25%	
Gulliver	264	221	-16%	
lermes .	267	301	13%	
lummingbird	260	249	- 4 %	
mmpact	151	234	55%	
nside Jupiter	227	200	-12%	
anus	239	252	5%	
Citty Hawk	134	150	12%	
unar Star	111	111	0%	
MBAR	240	271	13%	
NUADE	125	138	11%	
lew World Exp	267	269	1%	
Quicksliver	276	287	4%	
/esat	191	212	11%	
/EVA	269	242	-10%	

• Version 1 did quite well (13 of 15 within ±20%).

is a very confident of the

Validation of Version 2 - Test Cases vs Actuals & Step 2 Proposal Costs (FY 99 \$M)

Ission	Actual Cost	Ver. 1	± %	Ver. 2	± %	
	195.4	207.0	5.9%	203.8	4.3%	
nesis	210.2	218.4	3.9%	221.7	5.5%	
Fidust	201.6	178.5	-11.5%	187.9	-6.8%	
	229.3	260.6	13.7%	249.7	8.9%	
nside Jupiter	269.0	255.6	-5.0%	227.5	-15.4%	
a simpact	243.0	324.1	33.4%	286.8	18.0%	

- Test case results look good
 - Version 1 <±20% on 5 of 6 cases (a little better than Disc 98 Step 1)
 - Version 2 <±20% on all 6 cases</p>
 - "Actuals" range is -7% to +9% -- closer fit than Version 1.
 - 5 missions are being added

Areas we are addressing in FY 2000 and in the near future

- Data set is being updated (current data is ≥1 year old)
- Detailed SW cost algorithm being developed
- Secondary CER's need review (i.e., project office, MA&E, sys eng)
- Participating within advanced PDC design team
- Instrument model to be updated (current model is 2 yrs old)
- Documentation started
- Risk, uncertainty, factors for new technologies
- Schedule vs. cost algorithm
- Probabilistic cost estimating tool
- To better meet customer requirements, other versions of model are needed (simplified version for earlier use, element level, etc.)

